Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 1572
Journal of Geophsical Research, 2003-04, Vol.108 (E4), p.8031-n/a
2003
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Geologic settings of Martian gullies: Implications for their origins
Ist Teil von
  • Journal of Geophsical Research, 2003-04, Vol.108 (E4), p.8031-n/a
Ort / Verlag
Headquarters: American Geophysical Union
Erscheinungsjahr
2003
Quelle
Wiley Online Library All Journals
Beschreibungen/Notizen
  • Martian gullies are found on steep slopes of all origins, on all sorts of terrains of all ages, scattered across nearly all of Mars. Gullies are observed on all manner of substrates (layered, massive, shattered, rubble), with or without nearby mantling deposits. Gullies are most common in the southern midlatitudes but also occur in the northern hemisphere, in near polar terrain, on equatorial volcanoes, and on northern plains. Most gullies in the southern hemisphere are on south-facing slopes, but they occur on slopes of all orientations. Gullies are among the youngest features on Mars but locally are overlain by eolian deposits and cut by faults. Old or eroded gullies are rare, and those found have been partially stripped from slopes, leaving no rock debris behind. Most gully deposits contain no detectable rocks. These data are inconsistent with published hypotheses of gully formation, including seeps and breakouts of water or brine, hydrothermal activity, cryovolcanism, and breakouts from liquid carbon dioxide. The data are consistent with gullies being dry flows of eolian material (dust and silt), comparable to climax snow avalanches on Earth. Eolian sedimentation should be correlated little with underlying geology: cause of slope, age of terrain, type of terrain, or the nature of the rocks. Eolian sedimentation should be correlated with wind deceleration (which will cause suspended sediment to drop), and areas with common gullies are those with strong wind deceleration (predicted by global circulation model). In such areas, sediment will be deposited preferentially in the lee of obstacles; for the gully-rich areas of the southern midlatitudes, winds blow from the NNW, so that sediment is deposited on SSE-facing slopes (i.e., poleward). These predictions are in accord with observations.
Sprache
Englisch
Identifikatoren
ISSN: 0148-0227
eISSN: 2156-2202
DOI: 10.1029/2002JE001900
Titel-ID: cdi_agu_primary_2002JE001900

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX