Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 21 von 116
Journal of physical chemistry. C, 2020-09, Vol.124 (35), p.18877-18885
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Effects of Temperature on Amine-Mediated CO2 Capture and Conversion in Li Cells
Ist Teil von
  • Journal of physical chemistry. C, 2020-09, Vol.124 (35), p.18877-18885
Ort / Verlag
American Chemical Society
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Integrated CO2 capture-conversion, which directly employs postcombustion CO2 in the chemisorbed state for subsequent transformations, is becoming an interesting avenue to facilitate CO2 utilization and storage. Such a process has potential to eliminate the conventional sorbent regeneration step normally required between capture and utilization, which is highly energy-intensive. We previously reported the scientific feasibility of such an integrated process, which was studied as a first exploration-of-concept in a nonaqueous, Li-based cell containing 2-ethoxyethylamine, LiClO4 salt, and dimethyl sulfoxide solvent. The amine-modified electrolyte activated otherwise-inactive CO2 for electrochemical reduction at voltages up to ∼2.9 V versus Li/Li+ at room temperature, and kinetically facilitated conversion of CO2 to lithium carbonate, indicating that amines can successfully act as electrochemical mediators. However, much remained to be understood about the functionality and compatibility of amine capture chemistry in nonaqueous electrochemical environments containing alkali salts, as well as the kinetics of conversion, particularly at temperatures where thermal desorption via N–C bond cleavage can become a competing issue. Here, we investigated the conversion (discharge) reaction in an elevated temperature range (40 °C < T < 70 °C) to evaluate these points. We find that CO2–amine chemistry is chemically and electrochemically stable in nonaqueous electrolytes (containing both amine and inorganic salt) at these higher temperatures, and that electrochemical conversion kinetics of CO2-loaded amines are competitive and enhanced at higher temperature, especially in the low-current regime. However, new issues arise from the Li anode as temperature increases. These issues can be directly addressed by identifying new amine–solvent combinations, such as diispropylamine in a glyme-based electrolyte (tetraethylene glycol dimethyl ether (TEGDME)) reported herein. These results indicate feasibility to pursue amine-facilitated conversion of CO2 over flexible temperature conditions, while also reporting for the first time that additional amine structures are active for integrated capture-conversion processes, broadening the parameter space for further research.
Sprache
Englisch
Identifikatoren
ISSN: 1932-7447
eISSN: 1932-7455
DOI: 10.1021/acs.jpcc.0c04803
Titel-ID: cdi_acs_journals_10_1021_acs_jpcc_0c04803

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX