Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Solving linear programs in the current matrix multiplication time
Ist Teil von
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 2019, p.938-942
Ort / Verlag
New York, NY, USA: ACM
Erscheinungsjahr
2019
Quelle
ACM Digital Library
Beschreibungen/Notizen
This paper shows how to solve linear programs of the form minAx=b,x≥0 c⊤x with n variables in time O*((nω+n2.5−α/2+n2+1/6) log(n/δ)) where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplication, and δ is the relative accuracy. For the current value of ω∼2.37 and α∼0.31, our algorithm takes O*(nω log(n/δ)) time. When ω = 2, our algorithm takes O*(n2+1/6 log(n/δ)) time.
Our algorithm utilizes several new concepts that we believe may be of independent interest:
(1) We define a stochastic central path method.
(2) We show how to maintain a projection matrix
√W A⊤(AWA⊤)−1A √W
in sub-quadratic time under ℓ2 multiplicative changes in the diagonal matrix W.