Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 23 von 164
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, p.849-857
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
EANN: Event Adversarial Neural Networks for Multi-Modal Fake News Detection
Ist Teil von
  • Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018, p.849-857
Ort / Verlag
New York, NY, USA: ACM
Erscheinungsjahr
2018
Quelle
Association for Computing Machinery
Beschreibungen/Notizen
  • As news reading on social media becomes more and more popular, fake news becomes a major issue concerning the public and government. The fake news can take advantage of multimedia content to mislead readers and get dissemination, which can cause negative effects or even manipulate the public events. One of the unique challenges for fake news detection on social media is how to identify fake news on newly emerged events. Unfortunately, most of the existing approaches can hardly handle this challenge, since they tend to learn event-specific features that can not be transferred to unseen events. In order to address this issue, we propose an end-to-end framework named Event Adversarial Neural Network (EANN), which can derive event-invariant features and thus benefit the detection of fake news on newly arrived events. It consists of three main components: the multi-modal feature extractor, the fake news detector, and the event discriminator. The multi-modal feature extractor is responsible for extracting the textual and visual features from posts. It cooperates with the fake news detector to learn the discriminable representation for the detection of fake news. The role of event discriminator is to remove the event-specific features and keep shared features among events. Extensive experiments are conducted on multimedia datasets collected from Weibo and Twitter. The experimental results show our proposed EANN model can outperform the state-of-the-art methods, and learn transferable feature representations.
Sprache
Englisch
Identifikatoren
ISBN: 9781450355520, 1450355528
DOI: 10.1145/3219819.3219903
Titel-ID: cdi_acm_books_10_1145_3219819_3219903_brief

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX