Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Proceedings of the Second ACM-IEEE international symposium on Empirical software engineering and measurement, 2008, p.279-281
2008
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
A hybrid faulty module prediction using association rule mining and logistic regression analysis
Ist Teil von
  • Proceedings of the Second ACM-IEEE international symposium on Empirical software engineering and measurement, 2008, p.279-281
Ort / Verlag
New York, NY, USA: ACM
Erscheinungsjahr
2008
Quelle
ACM Digital Library Complete
Beschreibungen/Notizen
  • This paper proposes a fault-prone module prediction method that combines association rule mining with logistic regression analysis. In the proposed method, we focus on three key measures of interestingness of an association rule (support, confidence and lift) to select useful rules for the prediction. If a module satisfies the premise (i.e. the condition in the antecedent part) of one of the selected rules, the module is classified by the rule as either fault-prone or not. Otherwise, the module is classified by the logistic model. We experimentally evaluated the prediction performance of the proposed method with different thresholds of each rule interestingness measure (support, confidence and lift) using a module set in the Eclipse project, and compared it with three well-known fault-proneness models (logistic regression model, linear discriminant model and classification tree). The result showed that the improvement of the F1-value of the proposed method was 0.163 at maximum compared to conventional models.
Sprache
Englisch
Identifikatoren
ISBN: 9781595939715, 1595939717
DOI: 10.1145/1414004.1414051
Titel-ID: cdi_acm_books_10_1145_1414004_1414051

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX